A Fast Randomized Eigensolver with Structured LDL Factorization Update
نویسندگان
چکیده
In this paper, we propose a structured bisection method with adaptive randomized sampling for finding selected or all of the eigenvalues of certain real symmetric matrices A. For A with a low-rank property, we construct a hierarchically semiseparable (HSS) approximation and show how to quickly evaluate and update its inertia in the bisection method. Unlike some existing randomized HSS constructions, the methods here do not require the knowledge of the off-diagonal (numerical) ranks in advance. Moreover, for A with a weak rank property or slowly decaying offdiagonal singular values, we show an idea of aggressive low-rank inertia evaluation, which means that a compact HSS approximation can preserve the inertia for certain shifts. This is analytically justified for a special case, and numerically shown for more general ones. A generalized LDL factorization of the HSS approximation is then designed for the fast evaluation of the inertia. A significant advantage over standard LDL factorizations is that the HSS LDL factorization (and thus the inertia) of A − sI can be quickly updated with multiple shifts s in bisection. The factorization with each new shift can reuse about 60% of the work. As an important application, the structured eigensolver can be applied to symmetric Toeplitz matrices, and the cost to find one eigenvalue is nearly linear in the order of the matrix. The numerical examples demonstrate the efficiency and the accuracy of our methods, especially the benefit of low-rank inertia evaluations. The ideas and methods can be potentially adapted to other HSS computations where shifts are involved and to more problems without a significant low-rank property.
منابع مشابه
A Fast Contour-Integral Eigensolver for Non-Hermitian Matrices
We present a fast contour-integral eigensolver for finding selected or all the eigenpairs of a non-Hermitian matrix based on a series of analytical and computational techniques, such as the analysis of filter functions, quick and reliable eigenvalue count via low-accuracy matrix approximations, and fast shifted factorization update. The quality of some quadrature rules for approximating a relev...
متن کاملFast Structured Eigensolver for Discretized Partial Differential Operators on General Meshes∗
In this work, we show a fast structured method for finding the eigenvalues of some discretized PDEs on general meshes, as well as symmetric sparse matrices. A fast structured multifrontal factorization scheme is considered, and the organization and partition of the separators in nested dissection for a general graph is considered for the purpose of efficient structured matrix operations. This s...
متن کاملA Superfast Structured Solver for Toeplitz Linear Systems via Randomized Sampling
We propose a superfast solver for Toeplitz linear systems based on rank structured matrix methods and randomized sampling. The solver uses displacement equations to transform a Toeplitz matrix T into a Cauchy-like matrix C, which is known to have low-numerical-rank offdiagonal blocks. Thus, we design a fast scheme for constructing a hierarchically semiseparable (HSS) matrix approximation to C, ...
متن کاملFast Sparse Selected Inversion 1285
We propose a fast structured selected inversion method for extracting the diagonal blocks of the inverse of a sparse symmetric matrix A, using the multifrontal method and rank structures. When A arises from the discretization of some PDEs and has a low-rank property (the intermediate dense matrices in the factorization have small off-diagonal numerical ranks), structured approximations of the d...
متن کاملMfrs: an Algorithm for the Structured Multifrontal Solution of Large Sparse Matrices via Randomized Sampling
This paper presents strategies for the development of an efficient algorithm (MFRS) for the direct solutions of large sparse linear systems. The algorithm is based on a structured multifrontal method with randomized sampling. We propose data structures and access schemes for a type of rank structured matrices, called Hierarchically SemiSeparable (HSS) forms. A data tree structure is used for HS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 35 شماره
صفحات -
تاریخ انتشار 2014